
Doorman Documentation
Release 1.0.0

Mozilla

Jan 31, 2018

Contents

1 Workflow 3

2 Contents 5
2.1 Quickstart . 5
2.2 Policies . 6
2.3 API . 9
2.4 Misc . 12

3 Indices and tables 15

HTTP Routing Table 17

i

ii

Doorman Documentation, Release 1.0.0

Doorman is an authorization micro-service that allows to checks if an arbitrary subject is allowed to perform an
action on a resource, based on a set of rules (policies).

Having a centralized access control service has several advantages:

• it clearly dissociates authentication from authorization

• it provides a standard and generic permissions system to services developers

• it facilitates permissions management across services (eg. makes revocation easier)

• it allows authorizations monitoring, metrics, anomaly detection

Contents 1

Doorman Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Workflow

It relies on OpenID Connect to authenticate requests. The policies are defined per service and loaded in memory.
Authorization requests are logged out.

When a service takes advantage of Doorman, a typical workflow is:

1. Users obtain an access token from an Identity Provider (eg. Auth0)

2. They use it to call a service API endpoint

3. The service posts an authorization request on Doorman to check if the user is allowed to perform a specific
action

4. Doorman uses the Origin request header to select the set of policies to match

3

https://en.wikipedia.org/wiki/OpenID_Connect

Doorman Documentation, Release 1.0.0

5. Doorman fetches the user infos using the provided access token and builds a list of strings (principals) to
characterize this user

6. Doorman matches the policies and returns if allowed or not, along with the list of principals

7. Based on the Doorman response, the service denies the original request or executes it

4 Chapter 1. Workflow

CHAPTER 2

Contents

2.1 Quickstart

2.1.1 Policies

Policies are defined in YAML files for each consuming service, locally or in remote (private) Github repos, as follow:

service: https://api.service.org
identityProvider: https://api.auth0.com/
policies:

- id: alice-bob-create-keys
description: Alice and Bob can create keys
principals:

- userid:alice
- userid:bob

actions:
- create

resources:
- key

effect: allow
-
id: crud-articles
description: Editors can CRUD articles
principals:

- role:editor
actions:

- create
- read
- delete
- update

resources:
- article

effect: allow

5

Doorman Documentation, Release 1.0.0

Save it to config/api-policies.yaml for example.

2.1.2 Run

Doorman is available as a Docker image (but can also be ran from source).

In order to read the local files from the container, we will mount the local config folder to /config. We’ll then
use /config as the POLICIES location.

docker run \
-e POLICIES=/config \
-v ./config:/config \
-p 8000:8080 \
--name doorman \
mozilla/doorman

Doorman is now ready to respond authorization requests on http://localhost:8080. See API docs!

2.1.3 Examples

See the examples folder on Github.

2.2 Policies

Policies are defined in YAML files for each consuming service as follow:

service: https://service.stage.net
identityProvider: https://auth.mozilla.auth0.com/
tags:

superusers:
- userid:maria
- group:admins

policies:
-
id: authors-superusers-delete
description: Authors and superusers can delete articles
principals:

- role:author
- tag:superusers

actions:
- delete

resources:
- article

effect: allow

• service: the unique identifier of the service

• identityProvider (optional): when the identify provider is not empty, Doorman will verify the Access Token
or the ID Token provided in the authorization header to authenticate the request and obtain the subject profile
information (principals)

• tags: Local «groups» of principals in addition to the ones provided by the Identity Provider

• actions: a domain-specific string representing an action that will be defined as allowed by a principal (eg.
publish, signoff, . . .)

6 Chapter 2. Contents

https://github.com/mozilla/doorman/tree/master/examples

Doorman Documentation, Release 1.0.0

• resources: a domain-specific string representing a resource. Preferably not a full URL to decouple from service
API design (eg. print:blackwhite:A4, category:homepage, . . .).

• effect: Use effect: deny to deny explicitly. Requests that don’t match any rule are denied.

2.2.1 Settings

Policies can be read locally or in remote (private) Github repos.

Settings are set via environment variables:

• POLICIES: space separated locations of YAML files with policies. They can be single files, folders or Github
URLs (default: ./policies.yaml)

• GITHUB_TOKEN: Github API token to be used when fetching policies files from private repositories

Note: The Dockerfile contains different default values, suited for production.

2.2.2 Principals

The principals is a list of prefixed strings to refer to the «user» as the combination of ids, emails, groups, roles. . .

Supported prefixes:

• userid:: provided by Identity Provider (IdP)

• tag:: local tags from policies file

• role:: provided in context of authorization requests

• email:: provided by IdP

• group:: provided by IdP

Example: ["userid:ldap|user", "email:user@corp.com", "group:Employee",
"group:Admins", "role:editor"]

2.2.3 Advanced policies rules

Regular expressions

Regular expressions begin with < and end with >.

principals:
- userid:<[peter|ken]>

resources:
- /page/<.*>

Note: Regular expressions are not supported in tags members definitions.

2.2. Policies 7

Doorman Documentation, Release 1.0.0

Conditions

The conditions are optional on policies and are used to match field values from the authorization request context.

The context value remoteIP is forced by the server.

For example:

policies:
-
description: Allow everything from dev environment
conditions:

env:
type: StringEqualCondition
options:
equals: dev

There are several types of conditions:

Field comparison

• type: StringEqualCondition

For example, match request.context["country"] == "catalunya":

conditions:
country:
type: StringEqualCondition
options:

equals: catalunya

Field pattern

• type: StringMatchCondition

For example, match request.context["bucket"] ~= "blocklists-.*":

conditions:
bucket:
type: StringMatchCondition
options:

matches: blocklists-.*

Match principals

• type: MatchPrincipalsCondition

For example, allow requests where request.context["owner"] is in principals:

conditions:
owner:
type: MatchPrincipalsCondition

Note: This also works when a the context field is list (e.g. list of collaborators).

IP/Range

• type: CIDRCondition

8 Chapter 2. Contents

Doorman Documentation, Release 1.0.0

For example, match request.context["remoteIP"] with [CIDR notation](https://en.wikipedia.org/wiki/
Classless_Inter-Domain_Routing#CIDR_notation):

conditions:
remoteIP:
type: CIDRCondition
options:

mask 255.255.0.0
cidr: 192.168.0.1/16

2.3 API

2.3.1 Summary

Basically, authorization requests are checked using POST /allowed.

• The Origin request header specifies the service to match policies from.

• The Authorization request header provides the OpenID Access Token to authenticate the request.

Request:

POST /allowed HTTP/1.1
Origin: https://api.service.org
Authorization: Bearer f2457yu86yikhmbh

{
"action" : "delete",
"resource": "articles/doorman-introduce",

}

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"allowed": true,
"principals": [
"userid:ada",
"email:ada.lovelace@eff.org",
"group:scientists",
"group:history"

]
}

2.3.2 Principals

The authorization request :term:principals will be built from the user profile information like this:

• "sub": userid:{}

• "email": email:{} (optional)

• "groups": group:{}, group:{}, ... (optional)

2.3. API 9

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation

Doorman Documentation, Release 1.0.0

They will be matched against those specified in the policies rules to determine if the authorization request is denied or
allowed.

2.3.3 Authentication

Doorman relies on OpenID to authenticate requests.

It will use the service and identityProvider fields from the service policies file to fetch the user profile
information.

The Origin request header should match one of the services defined in the policies files.

The Authorization request header should contain a valid Access Token, prefixed with Bearer ``. This
access token must have been requested with the ``openid profile scope for Doorman to
be able to fetch the profile information (See Auth0 docs).

The userinfo URI endpoint is then obtained from the metadata available at {identityProvider}/.
well-known/openid-configuration.

If the obtention of user infos is denied by the Identity Provider, the authorization request is obviously denied.

Using ID tokens

Doorman can verify and read user information from JWT ID tokens. Since the ID token payload contains the user
information, it saves a roundtrip to the Identity Provider when handling authorization requests.

For this to work, the service value in the policies file must match the audience value configured on
the Identity Provider — the unique identifier of the target API. For example, in Auth0 it can look like this:
SLocf7Sa1ibd5GNJMMqO539g7cKvWBOI.

Important: When using JWT ID tokens, only the validity of the token will be checked. In other words, users that are
revoked from the Identity Provider after their ID token was issued will still considered authenticated until the token
expires.

Without authentication

If the identity provider is not configured for a service (explicit empty value), no authentication is required and the
principals are posted in the authorization body.

POST /allowed HTTP/1.1
Origin: https://api.service.org
Authorization: Bearer f2457yu86yikhmbh

{
"action" : "delete",
"resource": "articles/doorman-introduce",
"principals": [
"userid:mickaeljfox",
"email:mj@fox.com",
"group:actors"

]
}

10 Chapter 2. Contents

https://auth0.com/docs/tokens/access-token#access-token-format
https://auth0.com

Doorman Documentation, Release 1.0.0

It is not especially recommended, but it can give a certain amount of flexibility when authentication is fully managed
on the service.

A typical workflow in this case would be:

1. Users call the service API endpoint 1. The service authenticates the user and builds the list of principals 1. The
service posts an authorization request on Doorman containing the list of principals to check if the user is allowed

2.3.4 Context

Authorization requests can carry additional information contain any extra information to be matched in policies con-
ditions.

The values provided in the roles context field will expand the principals with extra role:{} values.

POST /allowed HTTP/1.1
Origin: https://api.service.org
Authorization: Bearer f2457yu86yikhmbh

{
"action" : "delete",
"resource": "articles/doorman-introduce",
"context": {
"env", "stage",
"roles": ["editor"]

}
}

2.3.5 API Endpoints

(Automatically generated from the OpenAPI specs)

POST /allowed
Check authorization request

Are those principals allowed to perform this action on this resource in this context?

With authentication enabled, the principals are either read from the Identity Provider user info endpoint or
directly from the JSON Web Token payload if an ID token is provided.

Status Codes

• 400 Bad Request – Missing headers or invalid posted data.

• 401 Unauthorized – OpenID token is invalid.

• 200 OK – Return whether it is allowed or not.

Request Headers

• Origin – The service identifier (eg. https://api.service.org). It must match one
of the known service from the policies files.

• Authorization – With OpenID enabled, a valid Access token (or JSON Web ID To-
ken) must be provided in the Authorization request header. (eg. Bearer
eyJ0eXAiOiJKV1QiLCJhbG. . . 9USXpOalEzUXpV)

POST /__reload__
Reload the policies

2.3. API 11

https://github.com/mozilla/doorman/blob/master/api/openapi.yaml
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/TR/cors/#origin-request-header
https://tools.ietf.org/html/rfc7235#section-4.2

Doorman Documentation, Release 1.0.0

Reload the policies (synchronously). This endpoint is meant to be used as a Web hook when policies files were
changed upstream.

> It would be wise to limit the access to this endpoint (e.g. by IP on reverse proxy)

Status Codes

• 200 OK – Reloaded successfully.

• 500 Internal Server Error – Reload failed.

GET /__heartbeat__
Is the server working properly? What is failing?

Status Codes

• 200 OK – Server working properly

• 503 Service Unavailable – One or more subsystems failing.

GET /__lbheartbeat__
Is the server reachable?

Status Codes

• 200 OK – Server reachable

GET /__version__
Running instance version information

Status Codes

• 200 OK – Return the running instance version information

GET /__api__
Open API Specification documentation.

Status Codes

• 200 OK – Return the Open Api Specification.

GET /contribute.json
Open source contributing information

Status Codes

• 200 OK – Return open source contributing information.

2.4 Misc

2.4.1 Run from source

make serve -e "POLICIES=sample.yaml /etc/doorman"

2.4.2 Run tests

make test

12 Chapter 2. Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Doorman Documentation, Release 1.0.0

2.4.3 Generate API docs

We use Sphinx, therefore the Python virtualenv command is required.

make docs

2.4.4 Build docker container

make docker-build

2.4.5 Advanced settings

• PORT: listen (default: 8080)

• GIN_MODE: server mode (release or default debug)

• LOG_LEVEL: logging level (fatal|error|warn|info|debug, default: info with
GIN_MODE=release else debug)

• VERSION_FILE: location of JSON file with version information (default: ./version.json)

2.4.6 Frequently Asked Questions

Why did you do this like that?

If something puzzles you, looks bad, or is not crystal clear, we would really appreciate your feedback! Please file an
issue! — yes, even if you feel uncertain :)

Why should I use Doorman?

Doorman saves you the burden of implementing a fined-grained permission system into your service. Plus, it can
centralize and track authorizations accross multiple services, which makes permissions management a lot easier.

How is it different than OpenID servers (like Hydra, etc.)?

Doorman is not responsible of managing users. It relies on an Identity Provider to authenticate requests and focuses
on authorization.

What is the difference with my Identity Provider authorizations?

Identity Providers may have some authorization/permissions system that allow to restrict access using user groups,
audience and scopes.

This kind of access control is global for the whole service. Doorman provides advanced policies rules that can be
matched per action, resource, or any domain specific context.

Why YAML?

Policies files are meant to be edited or at least reviewed by humans. And YAML is relatively human-friendly. Plus,
YAML allows to add comments.

2.4. Misc 13

http://www.sphinx-doc.org
https://github.com/mozilla/doorman/issues
https://github.com/mozilla/doorman/issues

Doorman Documentation, Release 1.0.0

2.4.7 Glossary

Identity Provider An identity provider (abbreviated IdP) is a service in charge of managing identity information,
and providing authentication endpoints (login forms, tokens manipulation etc.)

Access Token

Access Tokens An access token is an opaque string that is issued by the Identity Provider.

ID Token

ID Tokens The ID token is a JSON Web Token (JWT) that contains user profile information (like the user’s name,
email, and so forth), represented in the form of claims.

Principal

Principals In Doorman, the principals is the list of strings that characterize a user. It is built from the user informa-
tion, tags from the policies file and roles from the authorization request. (see Wikipedia)

14 Chapter 2. Contents

https://en.wikipedia.org/wiki/Principal_(computer_security)

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

Doorman Documentation, Release 1.0.0

16 Chapter 3. Indices and tables

HTTP Routing Table

/__api__
GET /__api__, 12

/__heartbeat__
GET /__heartbeat__, 12

/__lbheartbeat__
GET /__lbheartbeat__, 12

/__reload__
POST /__reload__, 11

/__version__
GET /__version__, 12

/allowed
POST /allowed, 11

/contribute.json
GET /contribute.json, 12

17

Doorman Documentation, Release 1.0.0

18 HTTP Routing Table

Index

A
Access Token, 14
Access Tokens, 14

I
ID Token, 14
ID Tokens, 14
Identity Provider, 14

P
Principal, 14
Principals, 14

19

	Workflow
	Contents
	Quickstart
	Policies
	API
	Misc

	Indices and tables
	HTTP Routing Table

